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Stationary and dynamic properties of reduced density matrices can be deter- 
mined from formal or approximate closures of an infinite hierarchy of equations. 
The local macroscopic conservation laws place weak but important constraints 
on the reduced density matrices which should be respected by any closure. For 
pairwise additive forces conditions on the closure of the one- and two-particle 
equations are obtained that preserve the exact functional dependence of the con- 
served densities and their fluxes on the reduced density matrices. To illustrate 
the nature of these conditions, a closure approximation suitable for a quantum 
gas is given, yielding an extension of the time-dependent Hartree-Fock equa- 
tions for the dynamics of a nuclear fluid to include collisions. 

KEY WORDS: Kinetic theory; conservation law; time-dependent Hartree- 
Fock. 

1. INTRODUCTION 

The determination of approximate kinetic equations from the exact 
hierarchy for the reduced distributions has its origins in the work of 
Bogoliubov. 4 He postulated that all distribution functions become time- 
independent functionals of the single-particle distribution after an initial 
"synchronization" period. This functional relationship provides a formal 
closure of the hierarchy of equations yielding a kinetic equation for the 
single-particle distribution function. In particular, Bogoliubov showed that 
the density expansion of the two-particle functional leads to the Boltzmann 
equation as a first approximation. The validity of the functional assump- 
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tion and the convergence of its density expansion were clarified only much 
later with the systematic investigation by Cohen and his collaborators. 5 
These studies unveiled a remarkably rich structure of dynamical properties 
beyond those expected from corresponding equilibrium many-body studies. 
In contrast to the initial assumptions of Bogoliubov and others, it is now 
believed that the functional relationship of reduced distribution functions is 
nonanalytic in most of the controllable parameters (including the density), 
and that the required separation of time scales does not exist. Nevertheless, 
the notion of a functional relation as a means for obtaining kinetic equa- 
tions remains at the heart of both formally exact and approximate 
methods, although its construction is a more formidable and interesting 
problem than originally anticipated. 

The objective here is to describe an important constraint imposed by 
local conservation laws on any approximate closure relation. 6 The results 
below do not indicate a method for constructing such an approximation, 
but only provide guidance for preservation of some of the most important 
properties. Attention is limited to a one-component fluid of particles 
interacting via short-ranged, repulsive, pairwise additive potentials. The 
notation is chosen to emphasize the structural similarity of classical and 
quantum problems. Observables of interest are represented by sums of 
single-particle or two-particle operators. If y denotes such an observable, 
then its average value at time t is given by 

(y ;  t ) = T r  y(1)f(1)(1; t ) + T r  y(1, 2)f(2)(1,2; t) (1) 
1 1,2 

Here y(1) and y(1, 2) are the one- and two-particle operators defining y, 
and f(~) is the reduced density operator for s particles. (3) The traces are 
defined over one- and two-particle Hilbert spaces, respectively. A complete 
description of these observables is therefore given by specification of only 
the two lowest order reduced density operators. These in turn are deter- 
mined from the quantum BBGKY (Bogoliubov, Born, Green, Kirkwood, 
Yvon) hierarchy. (3'4) 

The microscopic conservation laws are identities relating the local 
densities to associated fluxes. Each density and flux is represented by an 
operator of the above form. Let ~ denote the average of one of the local 
conserved densities and dp its associated average flux. Then the macroscopic 
conservation law has the form 

8 
r i f(~), f(z)) + V" dp(r I f (1), f(2)) = 0 (2) 

5 See ref. 2 for a review with references. 
6 This work was first presented at the 1980 Sanibel Symposium (University of Florida preprint 
series 80-4, available on request). 



Kinetic Equations with Exact Conservation Laws 829 

where ~ and ~ are specified time-independent linear functionals o f f  (1~ and 
f(2). The specific form of these functionals is given in the Appendix. The 
relationships (2) are the desired constraints on the dynamics o f f  (11 and 
f(2), or equivalently, the closure of the hierarchy. The strongest constraint 
[Eq. (8) below] is required by the energy conservation law. 

Two forms of the macroscopic conservation laws are distinguished, 
"weak" and "strong." In their weak form the conservation laws simply 
relate the time derivative of a conserved density to the divergence of a flux, 
without regard to the dependence of the flux on f(1) or f(z/. Most small- 
parameter expansion methods lead to weak conservation laws, with the 
Boltzmann equation as an example. The constraints discussed here lead to 
strong conservation laws, defined to be such that the exact functional 
dependence of both the densities and fluxes on the distribution functions is 
preserved. This point of view takes the reduced density matrices as the 
primary variables for which approximations are made, with all other 
properties derived from them. 

The conservation laws are associated with underlying symmetries of 
the Galilei group which must be imposed also on the closure relation for 
self-consistency. Preservation of the conservation laws and symmetries still 
allows for a wide class of approximations. For example, any representation 
of the three-particle reduced density operator as a functional of the one- 
and two-particle density operators is constrained only by symmetry condi- 
tions. An example of such a closure is provided in Section 3. The system 
considered in this example is a gas with two-particle scattering length a 
such that the dimensionless density n a  3 is small. An appropriate closure is 
introduced which yields a binary collision approximation generalizing the 
Boltzmann equation to include small space and time scales. This 
generalization is precisely what is required to extend the conservation laws 
to their strong form. However, when degeneracy effects are important (3~ 
this binary collision closure does not satisfy the constraints required for the 
strong form of the conservation laws. The necessary modifications are 
found to yield mean field corrections to the quantum Boltzmann equation 
that are identified as Hartree-Fock and random phase contributions. (5~ 
Thus, the requirement of exact conservation laws introduces effects that are 
not associated with the small parameter n a  3. This model is relevant for 
generalization of the time-dependent Hartree-Fock description of heavy- 
ion scattering to include collisions. Early attempts to formulate such a 
kinetic description of heavy-ion scattering ted to difficulties with energy 
conservation. (6) The results here have exact conservation of energy by 
construction. 

In some cases closure may be accomplished in a formally exact 
manner. For classical mechanics implicit or explicit statements of the rela- 
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tionship of formal collision operators to conservation laws appear in many 
different contexts (see refs. 7 and 8 for early examples). Conditions on the 
closure associated with the Schwinger functional method ~ and formal 
algebraic methods (1~ have been given for both quantum and classical field 
theories. The discussion of conservation laws here complements these by 
emphasizing the hierarchy rather than a specific method. In this way the 
linear kinetic theory of correlation functions or Green's functions and the 
nonlinear kinetic theory for distribution functions can be treated in the 
same way. Furthermore, it is straightforward to describe quantum and 
classical mechanics in a notationally similar form. No analysis of the 
closure problem itself is given here. 

2. H IERARCHY A N D  C O N S E R V A T I O N  LAWS 

The reduced density operators f(s~ are obtained from a partial trace of 
the density operator for the complete system over all except those for s 
degrees of freedom. The density operator is defined for a Hilbert space of 
both symmetric and antisymmetric states, with a suitable projection for 
fermions or bosons. (3) The Liouville-vonNeumann equation then leads 
to a hierarchy of equations for the operators f(s). It is sufficient here to 
consider only the first two equations of this hierarchy, 

~-~-I- L(1) f(1)(1; t)+Tr2 L/(1, 2)f(2)(1, 2; t ) = 0  

(3) 

N+ L(1, 2) f~2~(1, 2; t )+  Tr[L,(1,3 3) + L/(2, 3)] f(3~(1, 2, 3; t ) = 0  

The Liouville operators L(1) and L(1, 2) are defined by 

L(1, 2) = L(1) + L(2) + L/(1, 2) 

L(c 0 A(e) = i[H(c0, A(e)] (4) 

L,(~,/~) A(7, fl)= i[ V(c~, fl), A(e,/~)] 

where H(e) is the single-particle Hamiltonian and V(~, fl) is the potential 
energy operator for the pair of particles (~, fl). Units such that h = 1 have 
been used. 

Equations (3) do not determine f (1) and f (z), because of the coupling 
to f(3). However, a closed set of equations is obtained by a closure relation 
of the form 

G(1, 2; t l fo) ,  f(2)) = Tr[L,(1, 3) + L,(2, 3)] f(3)(1, 2, 3; t) (5) 
3 
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where G(1, 2; t l . , . )  is an operator-valued functional for the two-particle 
Hilbert space. In some cases this replacement can be made as a formally 
exact construction; in others it only defines an approximation. The func- 
tional in general is nonlinear in the reduced density matricies and nonlocal 
in space and time. Once G(1, 2; tl-,  -) has been determined, the one- and 
two-particle density operators can be calculated from (3) without further 
regard of higher-order density operators. Some general constraints on the 
choice of G are easily identified. For example, the exact hierarchy is 
invariant under transformations of the Galilei group, so G must reflect 
the corresponding symmetry. Also, permutation symmetry requires 
G(1, 2; t I -, . ) =  G(2, 1; tl-,  -). Finally, two other conditions follow from 
Eq. (5) and the definition o f f  (2), 

Tr G(1, 2; t I f  ~1~, f~21)= 0 (6) 
! ,2  

Tr G(1, 2; t I f  (1), f(2)) = N Tr Lt(1, 3) f(2)(1, 3) (7) 
2 3 

The conservation laws for a simple fluid are those for mass, energy, 
and momentum. The local macroscopic conservation equations are 
determined from the first two hierarchy equations by writing the average 
densities in the form of Eq. (1) and differentiating with respect to time. The 
contributions from L(~) and L(~,/~) can be transformed to the divergence 
of an average flux, yielding equations of the forms given in (2). The calcula- 
tion is straightforward, but lengthy, ~ and only an outline is given in the 
Appendix. The specific form of the densities and fluxes as linear functionals 
o f f  ~1) and f ~2) are~also given in the Appendix. The primary observation is 
that the analysis places only one additional constraint on G(1, 2; t l., .) 
beyond those indicated above, 

Tr u~(r; 1, 2) G(1, 2; t ] f ~  (2)) = 0  (8) 
1,2 

where u+(r; 1, 2) is the potential energy density, 

u~(r; 1, 2 ) =  [ 6 ( r - q l ) + 6 ( r - q 2 ) ]  II(1, 2) (9) 

Here ql and 112 are the position operators for particles 1 and 2, and r is a 
classical field point. This remarkably simple condition is sufficient to 
impose the exact conservation laws in their strong form. 

3. D E G E N E R A T E  Q U A N T U M  G A S  

To illustrate the utility of the requirements of the conservation laws 
and the other constraints of Section 2, a closure approximation suitable for 
the description of a degenerate quantum gas is described here. It is easily 
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verified that all conditions of the last section are satisfied by a closure 
approximation of the form 

G(1, 2; t l f ~ l ~ , f ~ 2 ) ) =  - (1  + ~ 2 )  Tr L,(1, 3 ) f ~ 3 ~ ( l Z 3 1 f ~ , f  ~2)) (10) 
3 

where the three-particle reduced density operator is expressed as a func- 
tional o f f  ~) and f ~2/. The symbol ~12 indicates a permutation of the labels 
1 and 2 in all operators to its right. It is perhaps easiest to understand the 
approximation to be considered here by describing the nondegenerate case 
first. For a low-density gas with two-particle scattering length a and density 
n the dimensionless quantity na 3 is a small parameter�9 To lowest order in 
this parameter only pairwise independent binary collisions contribute and 
a typical term on the right side of Eq. (10) can be approximated by 

V(o~, fl) f(3)(o~fi7 ) --~ V(o~, fl) f(2~(~, fl) f~l)(~) (11) 

This approximation results from recognizing that V(~, fl) requires particles 
and fl to be within the range a, and consequently the probability of the 

third particle y also being in this range is of order na 3. Correlations of 7 
with either a or fl therefore are negligible to lowest order. Use of Eq. (11) 
in the first two hierarchy equations gives an accurate description of a 
low-density gas. The equilibrium state is exact to order na 3. The kinetic 
equation for f~l) reduces to the usual Boltzmann equation if the further 
restrictions to large space and time scales are imposed. Without these 
restrictions it is easily verified that the exact conservation laws hold in their 
strong form. It is also verified that the resulting closed equations for fr 
and f~2) have the symmetry of the Galilei group, including time-reversal 
invariance. (For large space and time scales, the time-reversed equations 
lead to the "anti-Boltzmann equation" discussed by Cohen and BerlinJ TM) 
Equation (11) will be referred to as the binary collision approximation. 

The situation is somewhat more complex for a degenerate gas because 
the thermal de Broglie wavelength 2 provides an additional length whereby 
the density may be scaled. The parameter na 3 is still small for a dilute gas, 
but the parameter n23 can be very large at low temperatures. This means 
the correlation effects associated with Bose-Einstein or Fermi-Dirac 
statistics can be quite large and must be accounted for. The approximation 
(11) cannot be correct in this case because it does not account for long- 
range correlations due to the fact that f~3) is a projection onto properly 
symmetrized three-particle states. It is convenient to make this property 
explicit by defining f~s)(1 ..s) as 

f~s)(1 .s) = S(1 ..s) ] f<s)(1..s) S(1 ..s) (12) 
�9 s !  

= f<s)(1 ..s) S(1 ..s) (13) 
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where S(1..s) is the s-body symmetrization operator 

S(1..s) = ~ C~P, (14) 
Ps 

Here Ps denotes a member of the permutation group for s-particles and 
has the value + 1 for bosons or - 1  for fermions. Equation (13) follows 
from the identity S2(1..s)=st S(1..s) and the symmetry off(')(1..s). The 
quantity considered on the left side of (11) can be written exactly as 

g(~, fl) f(3)(o~fl7 ) = g(o:, fl) f(3)(~fl7 ) S(~fl7 ) (15) 

Since the exchange effects are now explicitly displayed in (15), the binary 
approximation of Eq. (11) can be applied now to V(e,/?)f(3)(cq~7), 

V(cz,/~) f(3)(~z/~~ -~ V(~,/~) f(2)(~/~) f"~(V) (16) 

Then, noting that S(~fl7) = S(~/~)[1 + Par + P~r], where P~  is the permu- 
tation operator for two-particle states, (15) and (16) yield the approximate 
closure 

V(~, ]~) f(3)(~flV ) --r V(~, fl) f(2)(~fl) f(1)(7)[1 + P~ + P~] (17) 

This result generalizes the binary collision approximation to include 
degenerate gases. 

Before criticizing (17), it is instructive to see its implications for the 
first two hierarchy equations. The first of Eqs. (3) is of course unchanged. 
The second becomes 

[ ~t+L(1)+L(2 )+s  = +P12) (18) 

g(12) =f(2)(12)-f(1)(1)f(l)(2)(1 + P12) (19) 

where g(12) is the correlated part off(2)(12), and I21 describes an exchange- 
modified pair interaction, 

s X(12) = i[ I)(12) X(12) - X(12) I9"(12)] 
(20) 

19(12) - Ef+(1) f+(2)  -f(1)(1) f(1)(2)] V(12) 

The factors f + - l + e f  ~) and f(1)(1) in the modified potential energy 
operator 19 result from the possible exchange of either one of the pair (1, 2) 
with any other particle of the fluid, and represents a true many-body effect. 
[In the language of many-body perturbation theory, the factor 

f + ( 1 ) f + ( 2 )  results from two-particle lines, while f(1)(1)f(1)(2) 
corresponds to two-hole lines.] The equilibrium and nonequilibrium 
properties of this approximate closure have been studied in some detail in 
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ref. 3. The equilibrium two-particle density matrix agrees with that of 
Martin and Schwinger's ladder approximation to the Bethe-Salpeter equa- 
tion for the two-particle Green's function. (14) The corresponding pressure 
has been compared with the Bethe-Uhlenbeck, Brueckner, and 
de Domenicis forms using realistic potentials for nuclear matter. (15) A 
kinetic equation for the one-particle reduced density operator also was 
obtained in the form of a generalized Uehling-Uhlenbeck equation. 

The binary collision approximation (11 ) leads to a closure of the form 
given by Eq. (10) and therefore implies the strong conservation laws. 
However, the degenerate case, (17), cannot be put in this form and does 
not satisfy the constraints of Section 2 for strong conservation laws. The 
difficulty can be traced to the use of S(~fiT)f(3)(c~flT)=f(3)(~fl~)S(~flT) to 
write Eq. (15), while this symmetry no longer holds after the binary 
collision approximation (16). This inconsistency is not unexpected, since 
the binary collision approximation applies to the product V(~fl)f(3)(c~fly) 
rather than to f(a)(efl7 ) alone. It appears, however, that the conservation 
laws require a more symmetric treatment o f f  (a) that includes additional 
effects not of the binary collision type. The simplest such closure that 
contains the binary collision approximation appears to be 

V((z, fl) f(3)(~fly ) --) V(o~, fl)[f(2)(o~fl) f(1)(7 ) + f(2)(~7)f(1)(fl) 

+f(2)(yfl) fO)(a ) _  2fO)(a) f(1)(fl) f(')(~))] (21) 

The first term is the binary collision term of Eq. (16), while the second and 
third terms result from its symmetrization. The last term is required to 
assure the proper uncorrelated limit when all particles are asymptotically 
far apart. These additional terms cannot be justified as being of lowest 
order in na 3, instead, their inclusion is required by the conservation laws, 
which are now assured by the closure (21). 

Use of this closure in (12) gives the revised binary collision 
approximation, 

V(a, fl) f(3)(afly) ~ V(a, fl) f(2)(afi) f(1)(7)[1 + P~v + P~v] 

+ V(a, fl) g(ay)f(i)(fl)[1 + P:~ + P7~] 

+ V(a, fi) g(flT)f(i)(~)[1 + P~  + P~] (22) 

The second equation of the hierarchy is found to have a form similar to 
that of Eq. (18), 

[ ~  +/~(1) + E(2) + s g(12) 

---- --s fO)(1) f(1)(2)(1 + P,2) (23) 
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except that the free-particle operators L(~) have been replaced by mean 
field operators, 

/~,(ct) X(ct) = i[eHv(~), X(ct)] + 2(g(ct) X(ct) (24) 

Here, e~v(C~) is the Hartree-Fock Hamiltonian, 

gHF(0~) = H(0~) -I- Tr f(1)(fl) V(e~)(1 + P=e) (25) 
3 

and Jf(c~) is the quantum Vlasov operator, 

~P(~) X(c~)= i Tr[ V(e3)(1 + P~),  f(l)(ct)] X(/~) (26} 

It can be shown (16) that the Vlasov operators generate contributions of the 
random phase approximation. Thus, the differences between the two binary 
collision approximations (18) and (23) are Hartree-Fock and random 
phase renormalization of the free-particle propagation. 

The first equation of the hierarchy provides the basis for obtaining a 
kinetic equation. In terms of g(12; t) it becomes 

~ f (1 ) (1 ; t )+ i [~nv(1 ) , f (1 ) (1 ; t ) ]+TrL , (1 ,  Z) g (1 ,2 ; t )=O (27) 
2 

If correlations are neglected [ g(12; t) = 0], the time-dependent Hartree- 
Fock kinetic equation is obtained. This equation has been applied exten- 
sively over the past 10 years to describe heavy-ion collisions (see, e.g., 
ref. 17). In many cases the effects of dissipation must also be described and 
several methods~have been proposed for the addition of a collision operator 
to the time-dependent Hartree-Fock equation. As noted in the introduc- 
tion, there has been some concern about the consistency of collision 
operators and energy conservation. (6) The closure approximation (23) 
appears to provide a good model for the desired kinetic equation. It is 
known that the simple version of this approximation (18) provides an 
adequate description of the degeneracy effects in nuclear matter. (ls~ The 
mean field modifications of this result in (23) assure in addition that the 
conservation laws are strictly maintained. The detailed form of the collision 
operator is obtained by solving (23) for g(12; t) as a functional o f f ( l ;  t). 
The procedure parallels closely that of ref. 3, and will be described 
elsewhere. 

4. D I S C U S S I O N  

Conservation laws are an essential ingredient for most problems 
involving macroscopic transport. For example, it would be inconsistent to 
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calculate a transport coefficient from a kinetic theory that did not imply 
the conservation equation in which the coefficient occurs. This has been a 
primary problem in attempts to extend the classical dense-gas Enskog 
kinetic theory of hard spheres to other potential models. For example, a 
natural generalization for the square-well potential (18) fails to satisfy energy 
conservation, leading to inconsistencies in the calculation of the bulk 
viscosity. Although a modification has been developed recently to resolve 
the difficulty in this particular case, (19) it remains a problem for other 
potential models. The condition (8) given here provides guidance to a 
general class of closures that are free of such problems. 

Regarding the specific example considered in Section 3, it should be 
noted that the final result (22) can be obtained directly from the more 
familiar cluster representation for f(3)(c~fl~; t), 

f(3)(0~f17; t )=  f(1)(~; t ) f ( 1 ) ( f l ;  t)f(1)(7; t) + ~(~fl; t)f(~)(7; t) 

+ g(~xT; t)f(l)(fl; t)+ r t)f~l)(~; t )+  g(~/3~; t) (28) 

Here g(cq3; t)=f~2~(cq~; t)_f~l)(~; t)f~)(/~; t). If the three-particle correla- 
tion function ~(~/3~; t) is neglected, then the approximate closure (21) is 
regained. This approximation has been used to discuss classical kinetic 
equations both for plasmas ~2~ and for neutral fluids. ~21) Its extension to the 
degenerate quantum domain is straightforward, leading to (23), which 
describes a wealth of quantum effects that are difficult to obtain by more 
standard many-body methods. We are not aware of any detailed analysis 
of the resulting equations and we hope to present the equilibrium solutions 
for f~l) and f~2) as well as the associated kinetic equation elsewhere. The 
primary point of importance here, however, is that the closure approxima- 
tion was not obtained by the simple neglect of g(~/3~; t) in (28). This would 
be hard to justify on the basis of a systematic expansion in the small 
parameter n a  3. Instead, we attempted to retain the dominant effects to 
order n a  3 in Eq. (17) and found that the constraints imposed by the conser- 
vation taws required inclusion of the additional terms in (22). In this sense, 
the discussion here provides some justification or interpretation of the 
neglect of ~(7/3y; t) in (28) for degenerate fluids. These additional terms 
also survive in the nondegenerate limit, leading to Vlasov mean field 
corrections in the classical binary collision kinetic equation. 7 

7 It is possible to weaken (22) such that only the exchange parts of the last two terms on the 
right side are retained. This would still maintain the conservation laws for the degenerate 
case, and the simple binary collision approximation (17) would be recovered in the non- 
degenerate limit. However, this weakened version of (22) appears somewhat contrived, and 
we prefer to consider (22) as the natural extension of the binary collision approximation 
with exact conservation laws. 
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The problem of energy conservation from quantum kinetic equations 
with three-particle collisions also has been studied recently. (22'23/ However, 
only the case of a nondegenerate, spatially homogeneous state was con- 
sidered. The analysis in these references would be considerably simplified 
using the general conditions described here. For example, inspection of 
Eqs. (28)2(30) of ref. 22 is sufficient to see that condition (8) is satisfied, 
and thus to conclude that energy conservation holds without further 
computation. 

A P P E N D I X  

For a simple fluid the local conserved densities are those associated 
with mass, momentum, and energy, 

N 

p(r)= ~ m 6 ( r - r / )  
i~= 1 

N 

p(r)= ~ [Pi, 6 ( r - r i ) ] +  (A.1) 
i = 1  

N 

u(r)= ~ (4m) -1 [p~, 6 ( r - r i ) ] +  + Z ~  V(tj) 6 ( r - r i )  
i ~ l  i ~ j  

Here ri and pi denote the position and momentum operators, respectively, 
for the ith particle, and the bracket [ , ] + denotes the anticommutator. 
The average values for these densities are obtained by a trace over all 
degrees of freedom weighted by the N-particle density operator. Since the 
above are all sums of single-particle and two-particle operators, the results 
can be expressed in the form (I), 

(p(r); t )  = Tr m 3(r - rl ) f ~  ~(1; t) 
1 

(p(r); t )  = Tr[p~, 6(r - r~ ) ]  + f~)(1; t) 
1 

(u(r); t )  = Tr(4m) -1 [p~,  6 ( r - r 1 ) ]  + f~l)(1; t) 
l 

(A.2) 

+Tr  V(12) 6 ( r -  rl)f~z)(12; t) 
1,2 

This identifies the functionals defining the average conserved densities. 
The conservation laws and associated fluxes are obtained by differen- 

tiation of (A.2) with respect to time and use of the hierarchy equations (3). 
To illustrate the calculation, we consider only the energy density, 
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0 
8t (u(r); t )  = Tr(4m) - 1 ~  [-p~, 6(r - rl) ] + {L(1) f (~  

+ Tr L,(12) f~2~(12)} 
2 

+ Tr V(12) 6(r - rl){L(12 ) f(2)(12) + G(12; t l f(2~, f(~))} 
1,2 (A.3) 

By the cyclic property of the trace, the L operators can be shifted to 
operate on the phase functions rather than the reduced density operators. 
Simplifications occur since L(!)  vanishes when operating on any function 
of the momentum only, while Lt(12) vanishes when operating on a 
function of the coordinate only, 

0t (u(r); t )  = -Tr(4m)l 1 [p2  Z(1) 6 ( r - - r l ) ]+  f(1)(1) 

- Tr(4m) -1 [L,(1, 2) p~, 6 ( r - - r l ) ]+  f(2)(12) 
1,2 

- Tr{ [L(1)  + L(2 ) ]  V(12) 6(r - r l ) } / ( 2 ) ( 1 2 )  
1,2 

+Yr  u~(r; 12) G(12; t l f  ~2), f(~)) (A.4) 
1,2 

where uo is defined in Eq. (9). The first three terms can be expressed as the 
gradient of a flux with the identities 

L(1) 6(r - rl) = - (2m) -1  Vr" [Pl, 6(r - r l ) ]  + 

6 ( r - r 1 ) -  ~ ( r - r 2 )  = dS(r l - r2)~ f ( r - r l - s ( rz -r l ) )  (A.5) 

- ~?r~A~(r' rl ,  r2) 

Then Eq. (A.4) becomes 
a 
0-t (u(r); t )  ~r~ (s~(r); t )  = Trl,2 u~(r; 12) G(12; t l f  (a), f(l)) (A.6) 

where the average energy flux (sr t )  is found to be 

(s~(r); t )  = Tr(8m2) -1 [p~, [PlB, ~ ( r - r l ) ] + ] +  f(1)(1) 
1 

+ Tr(8m) -1 { [V(12) ,  [-Ply, 6 ( r - r l ) ] + ] +  
1,2 

Here F(12) is 

+[(pl+pz)a, Fa(12)]+ A~(r, rl,rz)}f(2)(12) (A.7) 

the force associated with the potential V(12). The local 
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average conservation law for energy is now obtained by noting that the 
right side of (A.6) vanishes for the exact hierarchy [right side of Eq. (5)]; 
similarly, any approximate closure must satisfy the condition given by 
Eq. (8). 
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